پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با مدل توسعه یافته شبکه عصبی
Authors
Abstract:
هدف اصلی این مقاله پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهمترین تحقیقات انجام گرفته در این زمینه پرداخته شد که نتیجه آن نمایان ساختن اشکالات موجود در برخی از این مطالعات بود. در گام بعدی بهمنظور ارائه مدلی که قادر به مدلسازی ضریب انتشار طولی در رودخانههای طبیعی باشد، رویکردی جدید از شبکه عصبی بر مبنای توابع آموزش شبه-نیوتنی که کمتر مورد توجه محققان بوده، معرفی شد. در نهایت نیز با بررسی نقش این دسته از توابع آموزش بر عملکرد شبکه، بهترین ساختار شبکه برای این منظور پیشنهاد گردید. نتایج بهدست آمده از این تحقیق بیانگر دقت قابل قبول مدل پیشنهادی بود بهطوری که مقادیر ضریب تعیین و میانگین قدرمطلق خطا برای مرحله آزمایش بهترتیب معادل 0/85 و 53 بود.
similar resources
پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با مدل توسعه یافته شبکه عصبی
هدف اصلی این مقاله پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم...
full textتخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی
انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...
full textتوسعه مدل شبکه عصبی بر مبنای توابع آموزش گرادیان مزدوج و پسانتشار ارتجاعی برای پیشبینی ضریب انتشار طولی رودخانهها
گام اساسی در مدلسازی کیفی محیطهای آبی یک بعدی مانند رودخانهها، تعیین ضریب انتشار طولی (LDC) برای معادلهی انتقال-پخش آلایندهها است. در این مقاله برای پیشبینی LDC، مدل شبکهی عصبی مصنوعی (ANN) بر مبنای الگوریتمهای آموزشی با رویکرد عددی و همچنین رویکرد اکتشافی توسعه داده شده است. برای این منظور توابع آموزشی گرادیان مزدوج شامل توابع فلچر-ریوس، پولاک-ریبره، پاول-بیل و گرادیان مزدوج مقیاس...
full textبررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی
در این پژوهش ضریب شکست نمونه های خالص الکلهای نوع اول و مخلوطهای دوتایی آنها به دو روش تجربی و مدلسازی مورد بررسی قرار گرفت. در روش تجربی از دستگاه رفرکتومتر برای اندازه گیری ضریب شکست استفاده شد و در روش مدلسازی، با به کارگیری شبکه عصبی مصنوعی پرسپترون چندلایه مدلسازی شد. به همین منظور ورودی های شبکه مربوط به مواد خالص، دما، جرم مولکولی و گروه های عاملی CH3، CH2 و OH و برای مخلوط ها کسر مولی،...
full textاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
full textMy Resources
Journal title
volume 21 issue 4
pages 104- 109
publication date 2011-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023